Ratios of Periods for Tensor Product Motives
نویسندگان
چکیده
In this paper, we prove some period relations for the ratio of Deligne’s periods for certain tensor product motives. These period relations give a motivic interpretation for certain algebraicity results for ratios of successive critical values for Rankin–Selberg L-functions for GLn × GLn′ proved by Günter Harder and the second author.
منابع مشابه
Multilinear Morphisms between 1-motives
We introduce the notion of biextensions of 1-motives by 1-motives and we define morphisms from the tensor product of two 1-motives to a third 1-motive as isomorphism classes of such biextensions. If S is the spectrum of a field of characteristic 0, we check that these biextensions define morphisms from the tensor product of the realizations of two 1-motives to the realization of a third 1-motiv...
متن کاملBiextensions of 1-motives by 1-motives
Let S be a scheme. In this paper, we define the notion of biextensions of 1-motives by 1-motives. Moreover, if M(S) denotes the Tannakian category generated by 1-motives over S (in a geometrical sense), we define geometrically the morphisms of M(S) from the tensor product of two 1-motives M1⊗M2 to another 1-motive M3, to be the isomorphism classes of biextensions of (M1, M2) by M3: HomM(S)(M1 ⊗...
متن کاملOn Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملBessel multipliers on the tensor product of Hilbert $C^ast-$ modules
In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...
متن کاملOn the Exponent of Triple Tensor Product of p-Groups
The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...
متن کامل